

Virtual Channel SDK Programmer

Guide

Version 1812

Copyright © Citrix Systems, Inc. All Rights Reserved.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 2 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Contents

Chapter 1: Using the Virtual Channel SDK .. 6

Requirements ... 7

System Requirements .. 7

Development Environment ... 7

Execution Environment ... 7

Build Process .. 8

Chapter 2: Architecture .. 9

Virtual Channel Overview ... 10

ICA and Virtual Channel Data Packets ... 11

Client WinStation Driver and Virtual Driver ... 12

Interaction .. 12

Module.ini .. 13

Virtual Channel Packets ... 13

Flow Control ... 14

Windows Monitoring API ... 15

Overview .. 15

Key points .. 15

Using the APIs .. 15

Programming guide ... 20

Programming reference... 20

Citrix Dynamic Virtual Channel Protocol .. 23

Architecture ... 23

How to write DVC component over ICA .. 23

Citrix Dynamic Virtual Channel Setup .. 24

Naming Static Virtual Channel ... 26

Steps to write DVC component over ICA ... 27

Chapter 3: Using Example Programs ... 28

Ping .. 29

Packet Format .. 29

Mix ... 29

Packet Format .. 30

Sequence of Events.. 30

Over .. 32

Packet Format - From Server to Client .. 33

Packet Format - From Client to Server .. 33

Sequence of Events.. 34

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 3 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Building Examples .. 35

Building a Server-side Example using Visual Studio or .NET .. 35

Building a Client-side Example for Win32 using Visual Studio .. 35

Preparing and Deploying a Virtual Driver .. 36

To deploy the MSI .. 36

To add a virtual channel after installation ... 36

Running an Example Virtual Channel ... 37

Debugging a Win32 virtual driver .. 37

Deploying Client Virtual Channels .. 38

Remotely .. 38

Administrative Template Changes for Ping Example ... 40

Best Practices ... 41

Chapter 4: Programming Guide .. 42

Design Suggestions .. 43

Server-Side Functions Overview ... 44

Client-Side Functions Overview .. 45

User-Defined Functions ... 45

Virtual Driver Helper Functions ... 46

Memory INI Functions ... 47

Chapter 5: Programming Reference ... 48

DriverClose ... 49

DriverGetLastError ... 49

DriverInfo ... 50

DriverOpen ... 52

DriverPoll .. 56

DriverQueryInformation ... 57

DriverSetInformation ... 58

SendData .. 59

ICADataArrival ... 60

miGetPrivateProfileBool ... 61

miGetPrivateProfileInt ... 62

miGetPrivateProfileLong .. 62

miGetPrivateProfileString .. 63

QueueVirtualWrite ... 64

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 4 of 72 Virtual Channel SDK Programmer Guide, Version 1808

VdCallWd ... 65

WFVirtualChannelClose .. 66

WFVirtualChannelOpen ... 67

WFVirtualChannelPurgeInput .. 68

WFVirtualChannelPurgeOutput ... 68

WFVirtualChannelQuery .. 69

WFVirtualChannelRead .. 70

WFVirtualChannelWrite ... 71

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 5 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Disclaimer

This document is furnished "AS IS." Citrix Systems, Inc. disclaims all warranties regarding the contents

of this document, including, but not limited to, implied warranties of merchantability and fitness for any

particular purpose. This document may contain technical or other inaccuracies or typographical errors.

Citrix Systems, Inc. reserves the right to revise the information in this document at any time without

notice. This document and the software described in this document constitute confidential information

of Citrix Systems, Inc. and its licensors, and are furnished under a license from Citrix Systems, Inc.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 6 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Chapter 1

Using the Virtual Channel SDK

Topics:

• Requirements

• Installing the Virtual

Channel SDK

The Citrix Virtual Channel Software Development Kit (SDK) provides

support for writing server-side applications and client-side drivers for

additional virtual channels using the ICA protocol. The server-side

virtual channel applications are on XenApp and XenDesktop servers.

This version of the SDK provides support for writing new virtual

channels for the Citrix plug-ins for Win32. If you want to write virtual

drivers for other client platforms, contact Citrix.

The Virtual Channel SDK provides:

• The Citrix Virtual Driver Application Programming Interface

(VDAPI) used with the virtual channel functions in the Citrix Server

API SDK (WFAPI SDK) to create new virtual channels. The virtual

channel support provided by VDAPI is designed to make writing

your own virtual channels easier.

• The Windows Monitoring API, which enhances the visual

experience and support for third-party applications integrated

with ICA.

• Working source code for several virtual channel sample

programs that demonstrate programming techniques.

The Virtual Channel SDK requires the WFAPI SDK to write the server

side of the virtual channel.

Note: For Presentation Server Client Versions 6.0 to 9.0, use the

Virtual Server SDK Version 2.3. To write virtual channel drivers for

DOS 32 clients or clients earlier than Version 6.0, use the Virtual

Channel SDK Version 2.1.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 7 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Requirements

System Requirements

You need to have Citrix Workspace app 1808 and install WinFrame API SDK.

You can build the virtual drivers and applications on any platform. To run, they require a server

running XenApp or XenDesktop.

Development Environment

Use Microsoft Visual Studio 2019 and .NET 4.0. Server-side development also

requires the WFAPI SDK.

Although the compiler software packages include C++, only C code is used in this SDK.
This SDK has not been tested with any other compilers or any other combinations.

Execution Environment

Server requirement: XenApp 6.5 or higher (earlier versions of XenApp and

XenDesktop are also supported but the Windows Monitoring API is currently

supported only on XenApp 5 Feature Pack 2 for Windows Server 2003, XenApp 6.0,

and XenDesktop 4).

Windows 32 client requirement: Citrix Workspace app 1808

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 8 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Build Process

The source supplied in this SDK includes Solution Files for use with the Microsoft

Visual Studio.

The client-side virtual driver is designed to be built using Visual Studio 2019, the

solution file for client-side is located at

\src\examples\vc\client\client_examples_win32.sln

You can build this solution from visual interface of Visual Studio 2019, with

"Configuration" set to "Release" and "Platform" set to "Win32".

Compiled object files and the binaries generated are placed in the Relese folder

located inside the project subfolder.

Eg. for vdmix the output folder would be src\examples\vc\client\vdmix\Release

The server-side examples can be built with Visual Studio 2019, solution files are

located at \src\examples\vc\server\server_2019.sln

Compiled object files and the binaries generated are placed in the Release folder

located inside the project subfolder.

Eg. for ctxmix built using VS 2019 the output folder would be

src\examples\vc\server\ctxmix\Release.

The components can also be built with debugging information turned on. The output

directory changes to Debug for debug objects.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 9 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Chapter 2

Architecture

Topics:

• Virtual Channel Overview

• ICA and Virtual Channel Data

Packets

• Client WinStation Driver and

Virtual Driver Interaction

• Virtual Channel Packets

• Flow Control

• Windows Monitoring API

A Citrix Independent Computing Architecture (ICA) virtual channel is a

bidirectional error-free connection for the exchange of generalized

packet data between a server running Citrix XenApp and a client

device. Developers can use virtual channels to add functionality to

clients. Uses for virtual channels include:

• Support for administrative functions

• New data streams (audio and video)

• New devices, such as scanners, card readers, and joysticks)

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 10 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Virtual Channel Overview

An ICA virtual channel is a bidirectional error-free connection for the exchange of generalized
packet data between a client and a server running Citrix XenApp or XenDesktop. Each
implementation of an ICA virtual channel consists of two components:

Server-side portion on the computer running XenApp or XenDesktop

The virtual channel on the server side is a normal Win32 process; it can be either an
application or a Windows NT service.

Client-side portion on the client device

The client-side virtual channel driver is a dynamically loadable module (.DLL) that executes
in the context of the client. You must write your virtual driver.

This figure illustrates the virtual channel client-server connection:

*

The WinStation driver is responsible for demultiplexing the virtual channel data from the

ICA data stream and routing it to the correct processing module (in this case, the virtual

driver DLL). The WinStation driver is also responsible for gathering and sending virtual

channel data to the server over the ICA connection. On the client side, the WinStation

driver is also called the client engine, or simply the engine.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 11 of 72 Virtual Channel SDK Programmer Guide, Version 1808

The following is an overview of client-server data exchange using a virtual channel:

1. The client connects to the server running XenApp or XenDesktop. The client

passes information about the virtual channels it supports to the server.
2. The server-side application starts, obtains a handle to the virtual channel,

and optionally queries for additional information about the channel.
3. The client-side virtual driver and server-side application pass data using

the following two methods:

• If the server application has data to send to the client, the data is sent to the client

immediately. When the client receives the data, the WinStation driver demultiplexes the
virtual channel data from the ICA stream and passes it immediately to the client virtual
driver.

• If the client virtual driver has data to send to the server, the data may be sent

immediately, or it may be sent the next time the WinStation driver polls the virtual driver.

When the data is received by the server, it is queued until the virtual channel application

reads it. There is no way to alert the server virtual channel application that data was

received.

4. When the server virtual channel application is finished, it closes the virtual

channel and frees any allocated resources.

ICA and Virtual Channel Data Packets

Virtual channel data packets are encapsulated in the ICA stream between the client and the

servers. Because ICA is a presentation-level protocol and runs over several different transports,

the virtual channel application programming interface (API) enables developers to write their

protocols without worrying about the underlying transport. The data packet is preserved.

For example, if 100 bytes are sent to the server, the same 100 bytes are received by the server

when the virtual channel is demultiplexed from the ICA data stream. The compiled code runs

independently of the currently configured transport protocol.

The ICA engine provides the following services to the virtual channel:

Packet encapsulation

ICA virtual channels are packet-based, meaning that if one side performs a write with a certain

amount of data, the other side receives the entire block of data when it performs a read. This

contrasts with TCP, for example, which is stream-based and requires a higher-level protocol to

parse out packet boundaries. Stated another way, virtual channel packets are contained within

the ICA stream, which is managed separately by system software.

Error correction

ICA provides its own reliability mechanisms even when the underlying transport is unreliable.

This guarantees that connections are error free and that data is received in the order in which it

is sent.

Flow control

The virtual channel API provides several types of flow control. This allows designers to structure

their channels to handle only a specific amount of data at any one time. See Flow Control on

page 14 for more information.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 12 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Client WinStation Driver and Virtual Driver
Interaction

Client virtual drivers may elect to send data in either of two modes:

• Polling mode

• Immediate mode

If operating in the polling mode, the WinStation driver polls each virtual driver regularly by

calling its DriverPoll function. When DriverPoll is called, the virtual driver should

immediately check any necessary state information, send any queued data, and return

control to the WinStation driver.

If operating in the immediate mode, the virtual driver may send data at any time. For

example, suppose the driver receives a packet from the server in the ICADataArrival

function. In the immediate send-data mode, the driver may send data immediately in

response to the packet received, and then control will return to the WinStation driver from

the ICADataArrival function.

Whenever the virtual driver attempts to send data to the server, it should be prepared for

a data send operation to sometimes be declined. This may occur because the

WinStation Driver supports a reasonable but not excessive amount of queued backlog

waiting to be sent to the server. If a send operation is declined, the virtual driver must

arrange to retry the send later.

In any case, whether operating in the polling or immediate mode, the virtual driver must

never block. When any of the driver functions are called by the WinStation driver, the

virtual driver must immediately check any necessary state information, send any queued

data, and return control to the WinStation driver.

The following process occurs when a user starts the client:

1. At client load time, the client engine reads the Configuration Storage in the registry to determine
the modules to configure, including how to configure the virtual channel drivers.

2. The client engine loads the virtual channel drivers defined in the Configuration Storage in

the registry by calling the Load function, which must be exported explicitly by the virtual

channel driver .DLL. The Load function is defined in the static library file Vdapi.lib, which is

provided in this SDK. Every driver must link with this library file. The Load function

forwards the driver entry points defined in the .DLL to the client engine.

1. For each virtual channel, the WinStation driver calls the DriverOpen function, which
establishes and initializes the virtual channel. The WinStation driver passes the
address of one of the send-data output functions in the WinStation driver to the virtual
channel driver. The virtual channel driver passes the address of the ICADataArrival
function to the WinStation driver. The WinStation driver calls the DriverOpen function
for each virtual driver when the client loads, not when the virtual channel is opened by
the server-side application.

2. When virtual channel data arrives from the server, the WinStation driver calls the ICADataArrival
function for that virtual driver.

3. If using the send-data polling mode, the virtual driver cannot initiate data transfers. Instead, the
WinStation driver calls DriverPoll to poll for data to send to the server. To send data, the virtual
channel driver can use the QueueVirtualWrite function (this address is obtained during

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 13 of 72 Virtual Channel SDK Programmer Guide, Version 1808

initialization) to send a block of data to the server-side version of the channel. During DriverPoll,
the virtual driver may try to send one or more packets (VirtualWrites) until there is no more data
to send, or the QueueVirtualWrite function returns the error code
CLIENT_ERROR_NO_OUTBUF, to indicate that there is no more buffer space, and that the
data in question has not been accepted, and must be retried later (normally on a later
DriverPoll).

4. If using the immediate send-data mode, the virtual driver may send data at any time. To send
data, the virtual channel driver will use the SendData function (this address is obtained during
initialization) to send a block of data to the server-side version of the channel. The virtual driver
may try to send one or more packets (VirtualWrites) until there is no more data to send, or the
SendData function returns the error code CLIENT_ERROR_NO_OUTBUF, to indicate that there
is no more buffer space, and that the data in question has not been accepted, and must be
retried later. The retry will normally happen when the WinStation driver presents a special
“notification” call to the virtual driver’s DriverPoll function. The notification DriverPoll call is made
when the WinStation driver detects that buffers have been freed and the send data operation
may be retried.

Module.ini

The XenApp plug-ins use settings stored in Module.ini to determine which virtual channels to

load. Driver developers can also use Module.ini to store parameters for virtual channels.

Module.ini changes are effective only before the installation. After the installation, you must

modify the Configuration Storage in the registry to add or remove virtual channels.

Use the memory INI functions to read data from Configuration Storage.

Virtual Channel Packets

ICA does not define the contents of a virtual channel packet. The contents are specific to the

particular virtual channel and are not interpreted or managed by the ICA data stream manager.

You must develop your own protocol for the virtual channel data.

A virtual channel packet can be any length up to the maximum size supported by the ICA

connection. This size is independent of size restrictions on the lower-layer transport. These

restrictions affect the server-side WFVirtualChannelRead and WFVirtualChannelWrite functions

and the QueueVirtualWrite and SendData functions on the client side. The maximum packet

size is 5000 bytes (4996 data bytes plus 4 bytes of packet overhead generated by the ICA

datastream manager).

Both the virtual driver and the server-side application can query the maximum packet size. See

DriverOpen for an example of querying the maximum packet size on the client side.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 14 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Flow Control

ICA virtual channels provide support for downstream (server to client) flow control, but there is

currently no support for upstream flow control. Data received by the server is queued until used.

Some transport protocols such as TCP/IP provide flow control, while others such as IPX do not. If
data flow control is needed, you might need to design it into your virtual channel.

Choose one of three types of flow control for an ICA virtual channel: None, Delay, or ACK. Each
virtual channel can have its own flow control method. The flow control method is specified by the
virtual driver during initialization.

None

ICA does not control the flow of data. It is assumed the client can process all data sent. You

must implement any required flow control as part of the virtual channel protocol. This method is

the most difficult to implement but provides the greatest flexibility. The Ping example does not

use flow control and does not require it.

Delay

Delay flow control is a simple method of pacing the data sent from the server. When the client

virtual driver specifies delay flow control, it also provides a delay time in milliseconds. The

server waits for the specified delay time between each packet of data it sends.

ACK

ACK flow control provides what is referred to as a sliding window. With ACK flow control, the
client specifies its maximum buffer size (the maximum amount of data it can handle at any one

time). The server sends up to that amount of data. The client virtual driver sends an ACK ICA

packet when it completes processing all or part of its buffer, indicating how much data was

processed. The server can then send more data bytes up to the number of bytes

acknowledged by the client.

This ACK is not transparent—the virtual driver must explicitly construct the ACK packet and

send it to the server. The server sends entire packets; if the next packet to be sent is larger
than the window, the server blocks the send until the window is large enough to accommodate

the entire packet.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 15 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Windows Monitoring API

Overview
These APIs allow creating solutions that synchronize the visual aspects of an application that
runs on a host (XenApp or XenDesktop) with corresponding visual elements that are running on
the Citrix Plug-in. The APIs consist of two different parts: client-side and host-side. The client-
side component exposes previously unavailable functionality to third parties. This includes
getting information about the ICA window on the client desktop (such as handle, dimensions,
panning and scaling), the corresponding client window to a given host window, and setting up a
callback function to be called when the ICA window changes. The host component is part of the
WinFrame API, and allows for tracking window positions on the host through kernel mode calls.

Key points
The APIs provide the following features:

• Allow efficient tracking of windows on a host through the WinFrame API.

• Provide methods for synchronizing with the client desktop display with the Virtual Channel SDK.

• Provide an improved visual experience and support to third-party applications for better ICA
integration.

Using the APIs

Getting started

Headers: wdapi.h
Libraries: wdica30.lib

Architecture

The APIs provide two distinct components with their own architectures: host-side and client-
side. The host component is part of the WinFrame API, and provides updates on tracked
windows. You can then communicate this data to Citrix Plug-in so as to synchronize window
positions. The client-side component in the Virtual Channel SDK then allows third parties to
synchronize with the ICA window. It provides them with information about the ICA window's
dimensions and handle, as well as whether it is panning or scaling. As a whole, the APIs
allow third-party applications to better integrate with ICA and provide a better visual
experience.

The client side extends the current WdQueryInformation system in the Virtual Channel
SDK to expose functionality that was previously unavailable to third parties. Users call
the pre-existing VdCallWd function to call the WinStation driver's QueryInformation
function which performs the requested task.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 16 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Samples

Get ICA Window Information

This sample shows how information about the ICA window is gathered. It populates a
structure with information about the current state of the ICA window. This includes its

dimensions, handle, view area dimensions and offset (for example, panning), as well
as its current mode (for example, scaling, panning, seamless).

WDQUERYINFORMATION wdQueryInfo;

UINT16 uiSize;

int rc;

WDICAWINDOWINFO infoParam;

wdQueryInfo.WdInformationClass = WdGetICAWindowInfo;

wdQueryInfo.pWdInformation = &infoParam;

wdQueryInfo.WdInformationLength = sizeof(infoParam);

uiSize = sizeof(wdQueryInfo);

rc = VdCallWd(g_pVd, WDxQUERYINFORMATION, &wdQueryInfo,

 &uiSize);

if(CLIENT_STATUS_SUCCESS == rc)

{

 // Successfully populated infoParam with ICA window

 // information

}

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 17 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Get Corresponding Client Window

This sample shows how to get the corresponding client window for a given server window.

WDQUERYINFORMATION wdQueryInfo;

UINT16 uiSize;

int rc;

HWND window = 0x42; // example server window handle

wdQueryInfo.WdInformationClass =

 WdGetClientWindowFromServerWindow;

wdQueryInfo.pWdInformation = &window;

wdQueryInfo.WdInformationLength = sizeof(window);

uiSize = sizeof(wdQueryInfo);

rc = VdCallWd(g_pVd, WDxQUERYINFORMATION, &wdQueryInfo,

 &uiSize);

if(CLIENT_STATUS_SUCCESS == rc)

{

 // Success, pWdInformation now points to the

 //corresponding client window hwnd.

}

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 18 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Register ICA Window Callback

This sample shows how to register a callback function that is called when the ICA window
changes. It registers a user defined callback function named Foo. Afterward, whenever the
ICA window changes, Foo is called with the current ICA window mode passed in. More
information about the ICA window is then gathered using WdGetICAWindowInfo information
class, as demonstrated in the first sample.

WDQUERYINFORMATION wdQueryInfo;

UINT16 uiSize;

int rc;

WDREGISTERWINDOWCALLBACKPARAMS callbackParams;

callbackParams.pfnCallback = &Foo; // Your callback function

wdQueryInfo.WdInformationClass =

WdRegisterWindowChangeCallback;

wdQueryInfo.pWdInformation = &callbackParams;

wdQueryInfo.WdInformationLength = sizeof(callbackParams);

uiSize = sizeof(wdQueryInfo);

rc = VdCallWd(g_pVd, WDxQUERYINFORMATION, &wdQueryInfo,

 &uiSize);

if(CLIENT_STATUS_SUCCESS == rc)

{

 // Callback successfully registered.

 // Function Foo will be called whenever the ICA window

 // mode, position, or size changes.

}

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 19 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Unregister ICA Window Callback
This sample shows how to unregister a previous ICA window change callback function. It

unregisters the callback function Foo from the previous example. The callback function is

no longer called when the ICA window changes.

WDQUERYINFORMATION wdQueryInfo;

UINT16 uiSize;

int rc;

wdQueryInfo.WdInformationClass =

WdUnregisterWindowChangeCallback

wdQueryInfo.pWdInformation = &callbackParams.Handle;

 // Previously returned handle

wdQueryInfo.WdInformationLength = sizeof(callbackParams.Handle);

uiSize = sizeof(wdQueryInfo);

rc = VdCallWd(g_pVd, WDxQUERYINFORMATION, &wdQueryInfo, &uiSize);

if(CLIENT_STATUS_SUCCESS == rc)

{

 // Callback successfully unregistered

}

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 20 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Programming guide

The APIs as a whole provide better window control for applications that coordinate windows between
the host and client desktop. In general, the host uses the WinFrame API component of the API to track
windows of interest. The host listens on an assigned mail slot for tracking updates about its windows.
These updates are then communicated to the Citrix Plug-in, where they are used to properly position
corresponding windows. The Citrix Plug-in uses the client-side portion of the APIs in the Virtual
Channel SDK to synchronize its windows with the ICA window. The Citrix Plug-in can be notified when
the ICA window changes, and thus make any necessary changes to other third-party applications.

Programming reference

Structures:

WDQUERYINFORMATION

Pre-existing structure passed to the WinStation driver's QueryInformation method.

Stores input as well as resulting output.

typedef struct _WDQUERYINFORMATION

{

 WDINFOCLASS WdInformationClass;

 LPVOID pWdInformation;

 USHORT WdInformationLength;

 USHORT WdReturnLength;

} WDQUERYINFORMATION, * PWDQUERYINFORMATION;

• WdInformationonClass: Set to the enum value corresponding to the API function you want to

call.

• pWdInformation: Necessary input parameters, if any, for this function call. If the call returns
anything, it is stored here as well.

• WdInformationLength: Set to the size of the input to which pWdInformation point.

▪ WdReturnLength: Filled in upon return; the size of the return value to which
pWdInformation points.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 21 of 72 Virtual Channel SDK Programmer Guide, Version 1808

WDICAWINDOWINFO

Struct passed as input when using the WdGetICAWindowInfo information class. Upon successful

return, this is populated with information about the ICA window.

typedef struct _WDICAWINDOWINFO

{

HWND hwnd;

 WDICAWINDOWMODE mode;

 UINT32 xWinWidth, yWinHeight, xViewWidth, yViewHeight;

 INT xViewOffset, yViewOffset;

} WDICAWINDOWINFO, * PWDICAWINDOWINFO;

• hwnd: ICA window handle.

• mode: Current mode of the ICA window (for example, scaling, panning, seamless).

• xWinWidth: Width of the ICA window.

• yWinHeight: Height of the ICA window.

• xViewWidth: Width of the ICA window's view area.

• yViewHeight: Height of the ICA window's view area.

• xViewOffset: How much the view area is offset in the x dimension (horizontal panning).

• yViewOffset: How much the view area is offset in the y dimension (vertical panning).

WDREGISTERWINDOWCALLBACKPARAMS

Struct passed as input when using the WdRegisterWindowChangeCallback information class.

typedef struct _WDREGISTERWINDOWCALLBACKPARAMS

{

 PFNWD_WINDOWCHANGED pfnCallback;

 UINT32 Handle;

} WDREGISTERWINDOWCALLBACKPARAMS, *PWDREGISTERWINDOWCALLBACKPARAMS;

• pfnCallback: The user defined function to be called when the ICA window changes (for

example, its mode, dimensions, view). This function should have the following header, with
the UINT parameter being the current mode of the ICA window (see WDICAWINDOWMODE):
typedef VOID (cdecl * PFNWD_WINDOWCHANGED) (UINT32);

• Handle: Upon successful return this handle is populated. It can later be used to identify the

handle when unregistering the callback.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 22 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Unions

WDICAWINDOWMODE

Union used to store the ICA window's current mode.

typedef union _WDICAWINDOWMODE

{

 struct

 {

 UINT Reserved : 1;

 UINT Seamless : 1;

 UINT Panning : 1;

 UINT Scaling : 1;

 } Flags;

 UINT Value;

} WDICAWINDOWMODE;

• Reserved: Reserved portion of the mode, not currently used.

• Seamless: ICA window is currently in seamless mode.

• Panning: ICA window is currently panning (that is, scrolled vertically/horizontally).

• Scaling: ICA window is currently scaling.

• Value: Raw value of the mode.

Enumerations

The WDINFOCLASS enumeration has four values used by the Windows Monitoring API:

• WdGetICAWindowInfo

• WdGetClientWindowFromServerWindow

• WdRegisterWindowChangeCallback

• WdUnregisterWindowChangeCallback

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 23 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Citrix Dynamic Virtual Channel Protocol

Architecture

The primary purpose of the DVC protocol is to provide a generic connection-based communication
infrastructure over traditional Static Virtual Channels (SVCs).

Dynamic Virtual Channels (or DVCs) are multiplexed over SVCs. In general, one SVC is used per
technology remoted over ICA. The DVC protocol provides the ability to create and communicate
between logically connected dynamic virtual channel endpoints.

A Dynamic Virtual Channel is an end-to-end connection created between an application
running on the ICA host (first endpoint) and an application running on the ICA client
(second endpoint, referred to as DVC listener). The end-to-end DVC connection is
established and maintained over an ICA connection.

Individual DVC instances are created and maintained by DVC managers. There is a DVC manager
running on the host (implemented as a device driver and service) and another on the client
(implemented as a virtual driver DLL). The host is responsible for creating dynamic virtual channels
and the client is responsible for creating and maintaining connections to client-side DVC
applications.

Once the DVC connection is established, both the host and the client-side DVC applications
can send data messages to each other. These messages can be initiated by either side, and
sending and receiving a message is the same on either side.

The protocol allows for multiple static channels to be used for DVC. By default, each DVC
plug-in, representing a specific technology, runs on a separate SVC. This allows the
administrator to prioritize individual DVC-remoted technologies by managing the priority of their
respective SVC. However, the DVC client can also be configured such that a SVC can be
shared by two or more DVC Plug-ins. This may be desirable in the rare case when the number
of DVC plug-ins is more than the available SVCs. Currently a maximum of 64 SVCs are
supported over ICA.

How to write DVC component over ICA

Microsoft’s DVC is implemented over the Remote Desktop Protocol and the Citrix DVC

protocol is implemented over the ICA protocol. To write the DVC component over ICA,

Microsoft’s DVC API can be used.

The Microsoft DVC client-side APIs are found in:
 http://msdn.microsoft.com/en-us/library/bb540853(VS.85).aspx

The server-side APIs are found in:
 http://msdn.microsoft.com/en-us/library/bb540857(VS.85).aspx.

http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-us/library/bb540857

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 24 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Citrix Dynamic Virtual Channel Setup

The following steps occur during the lifetime of a dynamic virtual channel:

1. The client DVC Manager enumerates all the registered DVC plug-ins and sends the list to

the host, which consists of pairs of DVC Plug-in Friendly Name and corresponding SVC

Name. The DVC plug-in Friendly Name could be a DLL name or any other friendly name

available. The SVC name is either administrator-assigned or generated from the friendly

name. The SVC name is always truncated to 7 characters plus a NULL terminator (8

total), which is the SVC name size used by the ICA protocol. The list is sent as part of the

CAPABILITY_DYNAMIC_VIRTUAL_CHANNEL ICA capability exchanged during the initial

ICA handshake at the WinStation Driver (WD) level. See the ICA3.0 protocol specification

(ica30.doc) for details on the format of CAPABILITY_DYNAMIC_VIRTUAL_CHANNEL.

Remarks:

• Normally, DVC plug-ins are registered according to the requirements defined by Microsoft.
Citrix provides additional DVC plug-in registration for two purposes:

a. Enumeration of known 3rd party plug-ins that are not properly registered and

cannot be enumerated otherwise.
b. Optional assignment by administrator of explicit SVC name per plug-in.

• If the SVC name is generated from a friendly name, as opposed to administrator-assigned,
then accidental collision with other SVCs is avoided as follows:

a. First the original name is truncated to 6 characters. Then a decimal digit is

appended starting from 0 and up to 9 such that the new name is unique. If the
name still is not unique, then step b is performed.

b. First the original name is truncated to 5 characters. Then two decimal digits are
appended starting from 0 and up to 99 such that the new name is unique.

• Name collision may occur with both SVCs used for DVC and other standard Citrix or 3rd
party SVCs. The range from 0 to 99 used to create unique SVC names is sufficient, since
currently ICA support only up to 64 SVCs.

• The Client DVC Manager registers N number of SVCs with the WD in DriverOpen. In
general, this will be 1 SVC per DVC Plug-in enumerated. However, plug-ins may share the
same SVC name if:

a. The administrator has explicitly assigned the same SVC name for more than one

DVC Plug in via the Citrix ICA Client DVC Registration.
b. There are no more SVCs available.

• In the future the Client DVC Manager might assign and load a separate SVC per DVC
listener (as opposed to plug-in). Currently, this is not possible because new listeners may
become available at any point after loading of a plug-in and the current ICA architecture
does not allow dynamic loading of SVCs at the client. All SVCs are loaded during the ICA
handshake.

2. The host DVC Manager opens a SVC for each channel name received from the client via the

CAPABILITY_DYNAMIC_VIRTUAL_CHANNEL ICA capability.

3. The host sends a list of supported DVC capabilities to the client and requests the list of client-

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 25 of 72 Virtual Channel SDK Programmer Guide, Version 1808

supported capabilities. Currently, for optimization purposes, DVC capabilities are negotiated

over one of the opened SVCs and they are assumed to apply to all SVCs.

4. The client responds with a list of supported capabilities. The list is sent over the same SVC.

5. The host then commits the DVC capabilities to be used for the lifetime of the ICA connection. The
list is sent over the same SVC.

6. For each DVC Plug-in the client sends a list of all currently available listeners hosted by

the DVC Plug-in. Each list is sent over the respective SVC:

a. Immediately after the DVC capabilities are committed by the host.
b. And at any point a new listener starts or an existing listener shuts down.

Remarks: Although it is theoretically possible for a listener to shut down at any point, in
practice once a listener starts, it does not shut down until the whole DVC plug-in shuts
down.

7. The host reads the list of listeners, caches any future updates from the client and keeps

a mapping in a table.

8. When subsequently the Virtual Channel Open API (WTSVirtualChannelOpenEx) is

called by a host application, the host looks up the listener name in its table, assigns a

new Channel Number in the range from 0 to 64K and links it to the respective listener.

The Channel Number is unique within a listener. A DVC Create request is then sent

over the SVC associated with the listener. The client responds over the same SVC with

success or failure to create the channel (DVC instance) on the specified listener. The

client’s response is communicated to the host application.

9. If a DVC channel is successfully created, data messages can be exchanged between

the application running on the ICA host and the DVC Listener running on the ICA client.

Sending and receiving messages is symmetrical between the host and client, and either

side can initiate sending a message.

10. Eventually a DVC channel is closed by either the host or the client. A close is triggered

when the host application closes the DVC instance handle but can also be triggered by

a client listener or by the client or host DVC Managers, for example, upon error.

11. All DVC packets are sent over SVC packets.

12. When the ICA client exists, the client DVC Manager shuts down and unloads all the

DVC Plug-ins, which in turn shut down their listeners.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 26 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Naming Static Virtual Channel

The Channel Name field provides a name for the static virtual channel to use for a specific

DVC plug-in. By default the static channel name to use will be automatically generated using

the module file name of the DVC plug-in. To ensure that a unique name is generated, upon

collision one or two digits may be used at the end of the name to make it unique while

keeping the name length at a maximum of seven characters. The channel name field is

explained as follows:

Section: ChannelName

Feature: DVC

Attribute Name: INI_DVC_PLUGIN_<DVC plugin name>

Definition location: inc\icaini.h

Data Type: String

Access Type: Read

Unix Specific: No

Present in ADM: No

Values:

Static virtual channel name

INI Location:

INI File Section Value

Module.ini
[DVC_Plugin_<DVC plugin name>]

Registry Location:

Registry Key Value

HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA
Client\Engine\Configuration\Advanced\Modules\DVC_Plugin_<DVC
plugin name>

*

The static virtual channel name can be modified using the above locations if the administrator

wants to give the explicit name.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 27 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Steps to write DVC component over ICA

This section explains how to write a DVC component over ICA using an example. Citrix DVC

protocol uses the existing interfaces provided by Microsoft to develop DVC components over

ICA. For more details on how to write DVC Server components and DVC Client components

refer to:

http://msdn.microsoft.com/en- us/library/bb540858(VS.85).aspx

and

http://msdn.microsoft.com/en-us/library/bb540854(VS.85).aspx

respectively.

http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 28 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Chapter 3

Using Example Programs

Topics:

• Ping

• Mix

• Over

• Building Examples

• Preparing and Deploying a

Virtual Driver

• Running an Example Virtual

Channel

• Debugging a Win32 virtual

driver

• Deploying Client Virtual

Channels Remotely

The example programs included with the Virtual Channel SDK are
buildable, working virtual channels. Use these examples to:

• Verify your Virtual Channel SDK installation is correct by

building a known working example program.

• Provide working examples of code that can be modified to suit

your requirements.

• Explore the features and functionality provided in the Virtual Channel
SDK.

Each of these example programs comprises a client virtual driver and a

server application. The server-side application is run from the command

line within an ICA session. A single virtual channel comprises an

application pair.

The example programs included with the Virtual Channel SDK are:

• Ping: Records the round-trip delay time for a test packet sent over a
virtual channel.

• Mix: Demonstrates a mechanism to call functions (for example, to
get the time of day) on a remote client.

• Over: Simple asynchronous application that demonstrates how to
code an application where the server must receive a response from
the client asynchronously, and where the type of packet being sent
to the client is different from the type received.

Each example includes a description of the program, packet format, and

other necessary information.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 29 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Ping

Ping is a simple program that records the round-trip delay time for a test packet sent over a virtual

channel. The server sends a packet to the client and the client responds with a packet containing

the time it received the original packet from the server. This sequence is repeated a specified

number of times, and then the program displays the round-trip time for each ping and the average

round-trip delay time.

For this example, there is no significant difference between a BEGIN packet and an END

packet. The two types of packets are provided as an example for writing your own virtual

channel protocols.

This program demonstrates:

• How to transfer data synchronously. The sequence of events is: {SrvWrite, ClntRead,

ClntWrite, SrvRead} {SrvWrite, ClntRead} {...}. The server waits for the client to reply

before sending the next packet.

• How to read parameter data (in this case, the number of times to send packets

to the client) from the Module.ini files.

Ping uses the SendData function to transmit data immediately, rather than waiting to be

polled.

Packet Format

The following packet is exchanged between the client and the server.

typedef struct PING

{

 USHORT uSign; // Signature

 USHORT uType; // Type, BEGIN or END, from server

 USHORT uLen; // Packet length from server

 USHORT uCounter; // Sequencer

 ULONG ulServerMS; // Server millisecond clock

 ULONG ulClientMS; // Client millisecond clock

} PING, *PPING;

Mix

Mix demonstrates a mechanism that can be used to call functions on a remote client (for example

to get the time of day). This program demonstrates an extensible scheme for making function

calls from the server to the client that allows the server to specify when it expects a response

from the client and when it does not. This method can increase performance, because the server

does not have to constantly wait for a reply from the client.

The server calls a series of simple functions:

• AddNo: Add two numbers and return the sum as the return value.

• DispStr: Write a string to the log file. There is no return value (write-only function).

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 30 of 72 Virtual Channel SDK Programmer Guide, Version 1808

• Gettime: Read the client time and return it as the return value. The actual implementation of

these functions is on the client side. The server conditionally waits for the response from the
client, depending on the function being executed. For example, the server waits for the
result of the AddNo or Gettime function, but not the write-only function DispStr, which returns
no result.

Packet Format

typedef struct MIXHEAD

{

 USHORT uType; // Packet type

 USHORT uFunc; // Index of Function

 ULONG uLen; // Length of data

 USHORT fRetReq; // True if return value required

 ULONG dwRetVal; // Return Value from client

 USHORT dwLen1; // length of data for #1 LpVoid

 USHORT dwLen2; // length of data for #2 LpVoid

} MIXHEAD, *PMIXHEAD;

The data consists of the above structure followed by the arguments to the function being

called. uLen is the total length of the data being sent, including the arguments. DwLen1 is

the length of the data pointed to by a pointer argument.

Sequence of Events

The Mix program demonstrates the following sequence of events. See the graphic on the next page.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 31 of 72 Virtual Channel SDK Programmer Guide, Version 1808

This figure illustrates the sequence of events that occurs when you use the Mix program, starting at the
top.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 32 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Over

Over is a simple asynchronous application. It demonstrates how to code an application in which

the server must receive a response from the client asynchronously, and the type of packet being

sent to the client is different from the type received.

When the Over program begins, it:

1. Spawns a thread that waits for a response from the client.

2. Begins sending data packets with sequence numbers to the client.

3. (After sending the last packet of data) sends a packet with a sequence number of
NO_MORE_DATA, and then closes the connection.

The client receives packets and inspects the sequence number. For every sequence number

divisible by 10, the client increases the sequence number by 7 and sends a response to the

server. These numbers are chosen arbitrarily to demonstrate that the client can

asynchronously send data to the server at any time.

The packet type used to send data from the server to the client is different from the packet type
used to receive data from the client.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 33 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Packet Format - From Server to Client

typedef struct OVER

{

 USHORT uSign; // Signature

 USHORT uType; // Type, BEGIN or END, from server

 USHORT uLen; // Packet length from server

 USHORT uCounter; // Sequencer

 ULONG ulServerMS; // Server millisecond clock

} OVER, *POVER;

Packet Format - From Client to Server

typedef struct DRVRESP

{

 USHORT uType; // Type OVERFLOW_JUMP from client

 USHORT uLen; // Packet length from client

 USHORT uCounter; // seqUencer

} DRVRESP, * PDRVRESP;

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 34 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Sequence of Events

This figure illustrates the sequence of events that occurs when you use the Over

program, starting at the top.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 35 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Building Examples

Building a Server-side Example using Visual Studio or
.NET

1. Create a new Win32 console project. Citrix recommends that the project name be associated with the
example (for example, ctxping). You can set the location of the project to the src\examples\vc\server
directory so that the .c source files are readily available.

2. Add the following directories to include the search path of the C++ preprocessor in the project settings
(where vcsdk is the directory in which you installed the Virtual Channel SDK):

• vcsdk\src\examples\vc\shared\inc

• vcsdk\src\shared\inc

3. Point to the wfapi include and library paths. Open file wfapi.mak from vcsdk installation
path\src\examples\build.

• Set WFAPILIB to the full path of WFAPI lib directory.

• Set WFAPIINC to the full path of WFAPI include directory.

The WFAPI SDK installs Wfapi.lib into the designated library directory.

Building a Client-side Example for Win32 using Visual
Studio

1. Open visual studio developer command prompt and change to directory

<vcsdk_unzipped_location>\src\examples\vc\

2. Set an environment variable:

 WFAPILIBPATH = C:\Program Files (x86)\Citrix\WfApiSDK

 or

 WFAPILIBPATH = C:\Program Files\Citrix\WfApiSDK

 depending on architecture.

3. For each example you want to build, type:

 cd client

 msbuild client_examples_win32.sln /p:Configuration=Release /p:Platform=win32 /verbosity:detailed

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 36 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Preparing and Deploying a Virtual Driver

Before installing a virtual driver on a client, copy the virtual driver for the platform to

the client device and configure the client MSI.

1. Copy the appropriate virtual driver for the platform to the directory on the device where

the client is installed. The virtual driver is the .Dll file in

\src\examples\vc\client\driver\platform\obj\retail, where driver is vdmix, vdover, or

vdping. The default installation directory for the Win32 client is

%SystemDrive%\Program Files\Citrix\ICA Client.

2. Open the standard client MSI package with the Microsoft packaging tools (for example,

Orca in the Windows Installer SDK).

3. Add the virtual channel .DLL to the MSI package.

4. Modify the Configuration Storage file /configuration/module.ini.

Caution: Editing the Registry incorrectly can cause serious problems that may

require you to reinstall your operating system. Citrix cannot guarantee that problems

resulting from the incorrect use of Registry Editor can be solved. Use the Registry

Editor at your own risk. Be sure to back up the registry before you edit it.

a. Locate the VirtualDriverEx string REG_SZ value in the
HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA
Client\Engine\Configuration\Advanced\Modules\ICA3.0 key. Append the name of the virtual
driver to the end of this line, for example: VirtualDriverEx = Ping.

b. Under the HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA
Client\Engine\Configuration\Advanced\Modules key, create a new <driver> key, where
<driver> is Mix, Over, or Ping. For Ping, the section would be:
HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA
Client\Engine\Configuration\Advanced\Modules\Ping. Add the following string REG_SZ
values under the above key:

DriverName = VDPING.DLL

DriverNameWin16 = VDPINGW.DLL

DriverNameWin32 = VDPINGN.DLL

PingCount = 3

The client engine uses DriverName, DriverNameWin16, and DriverNameWin32 to

determine the module filename to load for each platform. PingCount is a tunable parameter

used by the Ping virtual channel.

5. Repackage the MSI for deployment.

To deploy the MSI

Deploy your MSI package with Windows Active Directory Services or Microsoft Systems

Management Server. See your Windows or Systems Management Server documentation for more

information. No further configuration is necessary.

To add a virtual channel after installation

Because the Module.ini file is installed in the registry, modifying the file after installation has

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 37 of 72 Virtual Channel SDK Programmer Guide, Version 1808

no effect. To add a virtual channel after installation, use the Group Policy template or

change the registry keys corresponding to those in the Module.ini file at the following

registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICAClient\Engine\Configuration\Advanced

\Modules

Running an Example Virtual Channel

1. On a client configured with the client-side example, connect to a server running XenApp with the
associated server-side example.

2. Within the ICA session, run the server-side executable.

The server-side example queries the client-side virtual driver, and then displays the

driver information. Use the -d parameter to display detailed information.

For Ping only: CTXPING sends PingCount separate pings. PingCount has a default value of

three, but can be set in the [Ping] section of the Module.ini file. Each ping consists of a

BEGIN packet and an END packet.

Debugging a Win32 virtual driver

Use the TRACE feature to log events on the client. To enable the TRACE statements, you must

build the debug version of the virtual driver. When the debug module is installed on the client,

the TRACE statements write the debug information to a file.

At run time, you can specify which class and event flags to trace. This allows you to trace only

the sections you need, minimizing performance degradation.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 38 of 72 Virtual Channel SDK Programmer Guide, Version 1808

The class flag for virtual channels is 00000080. For the complete list of class and event flags,

see Logflags.h (in src\inc\).

1. Compile the debug version of the virtual driver for the client platform.

2. If it is running, close the client on the client device.

3. Copy the compiled debug version of the library into the directory on the client device

where the client is installed. For example, for the Ping example, copy VdpingN.dll to

C:\Program Files\Citrix\ICA Client.

4. Change to the directory containing the client and type:

wfcrun32 connection /c:xxxxxxxx /e:yyyyyyyy /logfile:filename where:

connection is the name of the connection in Remote Application Manager.

xxxxxxxx are the event flags you want to log.

yyyyyyyy are the class flags you want to log.

filename is the relative path of the file to which you want to save the log.

The client stores the Appsrv.ini file in each user’s profile directory. When starting the ICA

session with event logging, add /iniappsrv:%userprofile%\”application

data”\icaclient\appsrv.ini to the end of the command line above.

Deploying Client Virtual Channels
Remotely

To deploy virtual channels remotely, make changes based on the following administrative

template (.adm) file.

CustomVC is a placeholder for the channel name of the virtual channel.

;Group Policy template for Citrix Online Plug-in.
;Citrix Online Plug-in Client Extensions template
;Description:
;This file is provided as a base for third-party extensions

;to the Citrix Online Plug-in client.

; Copyright (C) Citrix Systems, Inc. All Rights Reserved.
;
CLASS MACHINE

CATEGORY !!Citrix
CATEGORY !!ICAClient

CATEGORY !!Third Party

#if version >= 4

EXPLAIN !!Explain_Third Party

#endif

; Continued below...

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 39 of 72 Virtual Channel SDK Programmer Guide, Version 1808

; Continued from above

; Remotely define virtual channel

POLICY !!Policy_CustomVirtualChannel

EXPLAIN !!Explain_CustomVirtualChannel

KEYNAME "Software\Policies\Citrix\ICA Client\Engine\Lockdown

Profiles\All Regions\Lockdown\Virtual Channels\Third

Party\CustomVC"

VALUENAME "VCEnable"

VALUEON "true,false" VALUEOFF "false" ACTIONLISTON

KEYNAME "Software\Citrix\ICA Client\Engine\Lockdown

Profiles\All Regions\Lockdown\Virtual Channels\Third

Party\CustomVC"

VALUENAME "VCEnable"

VALUE ""

KEYNAME "Software\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules\ICA 3.0"

VALUENAME "VirtualDriverEx"

VALUE "CustomVC"

KEYNAME "Software\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules\CustomVC"
VALUENAME "DriverName"

VALUE "Unsupported"

KEYNAME "Software\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules\CustomVC"

VALUENAME "DriverNameWin16"

VALUE "Unsupported"

KEYNAME "Software\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules\CustomVC"

VALUENAME

"DriverNameWin32" VALUE

 "VDCustomVC.DLL"

END ACTIONLISTON

ACTIONLISTOFF

KEYNAME "Software\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules\ICA 3.0"

VALUENAME

"VirtualDriverEx" VALUE ""

END ACTIONLISTOFF
END POLICY

END CATEGORY

END CATEGORY

END CATEGORY

[strings]

Citrix="Citrix Components"

ICAClient="Presentation Server Client"

Third Party="Extensions"

Explain_Third Party="These policies control extensions to the

 standard Citrix Presentation Server Client."

Policy_CustomVirtualChannel="Additional Virtual Channel"

Explain_CustomVirtualChannel=" This policy controls a virtual

 channel.\n\nSupplier:\nMy company.\n\nReference:"

A

L

U

E

O

N

"

t

r

u

e

,

f

a

l

s

e

"

V

A

L

U

E

O

F

F

"

f

a

l

s

e

"

A

C

T

I

O

N

L

I

S

T

O

N

KEYNAME
 "Softw
are\Citrix\ICA
Client\Engine\Lo
ckdown

Profiles\All

Regions\Lockdown\Virtual

Channels\Third

Party\CustomVC"

VALUENAME

"VCEnable"

VALUE ""

KEYNAME

 "Softw

are\Citrix\ICA

Client\Engine\Configurat

ion\Advanced\Modules\ICA

3.0"

VALUENAME

"VirtualDriverEx

"

VALUE

 "Custo

mVC"

KEYNAME

 "Softw

are\Citrix\ICA

Client\Engine\Configurat

ion\Advanced\Modules\Cus

tomVC"
V

A

L

U

E

N

A

M

E

"

D

r

i

v

e

r

N

a

m

e

"

V

A

L

U

E

"

U

n

s

u

p

p

o

r

t

e

d

"

KEYNAME

 "Softw

are\Citrix\ICA

Client\Engine\Configurat

ion\Advanced\Modules\Cus

tomVC"

VALUENAME

"DriverNameWin16

"

VALUE

 "Unsup

ported"

KEYNAME

 "Softw

are\Citrix\ICA

Client\Engine\Configurat

ion\Advanced\Modules\Cus

tomVC"

V

A

L

U

E

N

A

M

E

"

D

r

i

v

e

r

N

a

m

e

W

i

n

3

2

"

V

A

L

U

E

"

V

D

C

u

s

t

o

m

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 40 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Administrative Template Changes for Ping Example

For the ping virtual channel example, edit the .adm template file as follows (changes in the text

are in boldface).

Note: The Memory INI functions require the lines in the example referencing VCEnable.

Every parameter used by the virtual channel must appear in this file. The client uses

these to place security restrictions on the virtual channels.

;

; Group Policy template for Citrix Online Plug-in Client

; Ping virtual channel example template

; Description:

; A Group Policy template to remotely configure the Ping

; Virtual Channel

;

; Copyright (C) Citrix Systems. Inc. All Rights Reserved.

;

CLASS MACHINE

CATEGORY !!Citrix

CATEGORY !!ICAClient

CATEGORY !!Third Party

#if version >= 4

EXPLAIN !!Explain_Third Party

#endif

;

; Remotely configure the Ping Virtual Channel

;

POLICY !!Policy_PingVirtualChannel

EXPLAIN !!Explain_PingVirtualChannel

KEYNAME "Software\Policies\Citrix\ICA Client\Engine\Lockdown

Profiles\All Regions\Lockdown\Virtual Channels\Third

Party\ping"
VALUENAME "VCEnable"

VALUEON "true,false"

VALUEOFF "false"

ACTIONLISTON

KEYNAME "Software\Citrix\ICA Client\Engine\Lockdown\

Profiles\All Regions\Lockdown\Virtual

Channels\Third Party\ping"

VALUENAME "VCEnable"

VALUE ""

KEYNAME "Software\Citrix\ICA Client\Engine\Configuration\

Advanced\Modules\ICA 3.0"

VALUENAME "VirtualDriverEx"

VALUE "ping"

KEYNAME "Software\Citrix\ICA Client\Engine\Configuration\

Advanced\Modules\pin g "

VALUENAME "DriverName"

VALUE "Unsupported"

; Continued below...

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 41 of 72 Virtual Channel SDK Programmer Guide, Version 1808

; Continued from above.

KEYNAME "Software\Citrix\ICA Client\Engine\Configuration\

Advanced\Modules\ping"

VALUENAME "DriverNameWin16"

VALUE "Unsupported"

KEYNAME "Software\Citrix\ICA Client\

Engine\Configuration\Advanced\Modules\ping"

VALUENAME "DriverNameWin32"

VALUE "vdpingn.dll"
END ACTIONLISTON

ACTIONLISTOFF

KEYNAME "Software\Citrix\ICA Client\Engine\

Configuration\Advanced\Modules\ICA3.0"

VALUENAME "VirtualDriverEx"

VALUE ""
END ACTIONLISTOFF

END POLICY

END CATEGORY
END CATEGORY

END CATEGORY

[strings]

Citrix="Citrix Components"

ICAClient="Presentation Server Client"

Third Party="Extensions"

Explain_Third Party="These policies control extensions to the standard

Citrix Presentation Server Client."

Policy_PingVirtualChannel="Example Ping Virtual Channel"

Explain_PingVirtualChannel=" This policy controls the example

Ping virtual channel.\n\nSupplier:\n

My company.\n\nReference:Example001"

Best Practices

Citrix recommends using the .adm file to customize the following parts of the Group

Policy GUI:

• Specify a name (Additional Virtual Channel in the template file) that describes the

functionality provided by the virtual channel.

• Description text

• Supplier

• Reference (for example, add a URL or email address to access further information).

• GUI that appears when the policy is double-clicked (optionally and as required).

Do not change the name of the Citrix Components \Presentation Server Client

\Extensions folder.

Deploy the virtual channel DLL remotely using existing management tools and enable and configure
using the above GUI. You can do this to entire groups of computers within an organization.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 42 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Chapter 4

Programming Guide

Topics:

• Design Suggestions

• Server-Side Functions

Overview

• Client-Side Functions

Overview

Virtual channels are referred to by a seven-character (or shorter) ASCII
name. In several previous versions of the ICA protocol, virtual channels

were numbered; the numbers are now assigned dynamically based on

the ASCII name, making implementation easier.

When developing virtual channel code for internal use only, you can use

any seven-character name that does not conflict with existing virtual

channels. Use only upper and lowercase ASCII letters and numbers.

Follow the existing naming convention when adding your own virtual

channels.

The predefined channels, which begin with the OEM identifier
CTX, are for use only by Citrix.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 43 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Design Suggestions

Follow these suggestions to make your virtual channels easier to design and enhance:

• When you design your own virtual channel protocol, allow for the flexibility to add features.
Virtual channels have version numbers that are exchanged during initialization so that both

the client and the server detect the maximum level of functionality that can be used. For

example, if the client is at Version 3 and the server is at Version 5, the server does not

send any packets with functionality beyond Version 3 because the client does not know

how to interpret the newer packets.

• Because the server side of a virtual channel protocol can be implemented as a separate

process, it is easier to write code that interfaces with the Citrix-provided virtual channel

support on the server than on the client (where the code must fit into an existing code

structure). The server side of a virtual channel simply opens the channel, reads from and
writes to it, and closes it when done.

Writing code for the server-side is similar to writing an application, which uses services exported
by the system. It is easier to write an application to handle the virtual channel communication
because it can then be run once for each ICA connection supporting the virtual channel.

Writing for the client-side is similar to writing a driver, which must provide services to the system in
addition to using system services. If a service is written, it must manage multiple connections.

• If you are designing new hardware for use with new virtual channels (for example, an

improved compressed video format), make sure the hardware can be detected so that the

client can determine whether or not it is installed. Then the client can communicate to the
server if the hardware is available before the server uses the new data format. Optionally,

you could have the virtual driver translate the new data format for use with older hardware.

• There might be limitations preventing your new virtual channel from performing at an optimum
level. If the client is connecting to the server running XenApp through a modem or serial

connection, the bandwidth might not be great enough to properly support audio or video data.

You can make your protocol adaptive, so that as bandwidth decreases, performance

degrades gracefully, possibly by sending sound normally but reducing the frame rate of the
video to fit the available bandwidth.

• To identify where problems are occurring (connection, implementation, or protocol), first get

the connection and communication working. Then, after the virtual channel is complete and
debugged, do some time trials and record the results. These results establish a baseline for

measuring further optimizations such as compression and other enhancements so that the

channel requires less bandwidth.

• The time stamp in the pVdPoll variable can be helpful for resolving timing issues in your virtual

driver. It is a ULONG containing the current time in milliseconds. The pVdPoll variable is a
pointer to a DLLPOLL or DLL_HPC_POLL structure. See Dllapi.h (in src\inc\) for definitions of

these structures.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 44 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Server-Side Functions Overview

Server-side functions are entry points to virtual channel services provided by the ICAsubsystem on
the XenApp or XenDesktop server. Wfapi.h contains constants and function prototypes.

Use these functions to open and close virtual channels and to read, write, query,

and purge incoming or outgoing data.

The words IN and OUT in the function calling conventions are for clarification only. They are

defined as blank in Windef.h. If you do not have access to Windef.h, add the following to a

header file for your project:

#ifndef IN

#define IN

#endif

#ifndef OUT

#endif

Function Description

WFVirtualChannelClose on page 66 Closes an open virtual channel handle.

WFVirtualChannelOpen on page 67 Opens a handle to a specific virtual channel.

WFVirtualChannelPurgeInput on page 70 Purges all queued input data sent from the

client to the server on a specific virtual

channel.

WFVirtualChannelPurgeOutput on page 68 Purges all queued output data sent from the

server to the client on a specific virtual channel.

WFVirtualChannelQuery on page 69 Returns data related to a virtual channel.

WFVirtualChannelRead on page 70 Reads data from a virtual channel.

WFVirtualChannelWrite on page 71 Writes data to a virtual channel.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 45 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Client-Side Functions Overview

The client software is built on a modular configurable architecture that allows replaceable,

configurable modules (such as virtual channel drivers) to handle various aspects of an ICA

connection. These modules are specially formatted and dynamically loadable. To accomplish this
modular capability, each module (including virtual channel drivers) implements a fixed set of

function entry points.

There are three groups of functions: user-defined, virtual driver helper, and memory INI.

User-Defined Functions

To make writing virtual channels easier, dynamic loading is handled by the WinStation driver,

which in turn calls user-defined functions. This simplifies creating the virtual channel because all

you have to do is fill in the functions and link your virtual channel driver with Vdapi.lib (provided

with this SDK).

Function Description

DriverClose on page 48 Frees private driver data. Called before

unloading a virtual driver (generally upon

client exit).

DriverGetLastError on page 49 Returns the last error set by the virtual driver.

Not used; links with the common front end,

VDAPI.

DriverInfo on page 50 Retrieves information about the virtual driver.

DriverOpen on page 52 Performs all initialization for the virtual driver.

Called once when the client loads the virtual

driver (at startup).

DriverPoll on page 56 Allows driver to check timers and other state

information, sends queued data to the server,

and performs any other required processing.

Called periodically to see if the virtual driver

has any data to write.

DriverQueryInformation on page 57 Retrieves run-time information from the virtual

driver.

DriverSetInformation on page 58 Sets run-time information in the virtual driver.

ICADataArrival on page 60 Indicates that data was delivered. Called

when data arrives on the virtual channel.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 46 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Virtual Driver Helper Functions

The virtual driver uses helper functions to send data and manage the virtual channel. When the

WinStation driver initializes the virtual driver, the WinStation driver passes pointers to the helper

functions and the virtual driver passes pointers to the user-defined functions.

VdCallWd is linked in as part of VDAPI and is available in all user-implemented functions.

The others are obtained during DriverOpen when VdCallWd is called with the

WDxSETINFORMATION parameter.

Virtual channel drivers can send data from private buffers via the SendData or QueueVirtualWrite

functions obtained during DriverOpen. Either of these functions may decline to accept the data if

the WinSation Driver itself cannot buffer it. The channel will then need to retry the send operation

on the next DriverPoll.

Function Description

SendData on page 59 To send a packet of channel protocol to the

server, with a notification option.

QueueVirtualWrite on page 64 To send a packet of channel protocol to the

server. This is a legacy function. Use

SendData above for new virtual drivers.

VdCallWd on page 65 Used to query and set information from the

WinStation driver (WD).

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 47 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Memory INI Functions

Memory INI functions read data that the client engine reads from the Configuration Storage in the

registry and stored in a memory INI structure. These functions must be used because some

client devices store this information in ROM, and only the engine has access to this INI data.

The Memory INI functions read values from this Memory INI structure as if the values are being
read from the Configuration Storage. The Configuration Storage for specifying virtual channels is

in Software\Citrix\ICA Client\Configuration\Advanced\Modules\.

Important: Access to configuration data might be limited depending on security restrictions. In

particular, the virtual channel might not have access to all contents of the ICA file. This is

controlled by registry keys in HKEY_LOCAL_MACHINE\SOFTWARE

\Citrix\ICA Client\Engine\Lock down Profiles\All Regions\Lock down. You can use the

Group Policy file to modify the registry keys.

Function Description

miGetPrivateProfileBool on page 61 Returns a Boolean value.

miGetPrivateProfileInt on page 62 Returns an integer value.

miGetPrivateProfileLong on page 60 Returns a long value.

miGetPrivateProfileString on page 63 Returns a string value.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 48 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Chapter 5

Programming Reference

Topics:

• DriverClose

• DriverGetLastError

• DriverInfo

• DriverOpen

• DriverPoll

• DriverQueryInformation

• DriverSetInformation

• SendData

• ICADataArrival

• miGetPrivateProfileBool

• miGetPrivateProfileInt

• miGetPrivateProfileLong

• miGetPrivateProfileString

• QueueVirtualWrite

• VdCallWd

• WFVirtualChannelClose

• WFVirtualChannelOpen

• WFVirtualChannelPurgeIn
put

• WFVirtualChannelPurgeO

utput

• WFVirtualChannelQuery

• WFVirtualChannelRead

• WFVirtualChannelWrite

For function summaries , see:

• Server-Side Functions Overview on page 44

• Client-Side Functions Overview on page 45

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 49 of 72 Virtual Channel SDK Programmer Guide, Version 1808

DriverClose

The WinStation driver calls this function prior to unloading the virtual driver, when the ICA
connection is being terminated.

Calling Convention

INT Driverclose(PVD pVD, PDLLCLOSE pVdClose, PUINT16 puiSize);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdClose

Pointer to a standard driver close information structure.

puiSize

Pointer to the size of the driver close information structure. This is an input parameter.

Return Values

If the function succeeds the return value is CLIENT_STATUS_SUCCESS.

If the function fails, the return value is the CLIENT_ERROR_* value corresponding to the error

condition; see Clterr.h (in src\inc\) for a list of error values beginning with CLIENT_ERROR.

Remarks

When DriverClose is called, all private driver data is freed. The virtual driver does
not need to deallocate the virtual channel or write hooks.

The pVdClose structure currently contains one element – NotUsed. This structure can be

ignored.

DriverGetLastError

This function is not used but is available for linking with the common front end, VDAPI.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 50 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Calling Convention

INT DriverGetLastError(PVD pVD,PVDLASSTERROR pVdLastError);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdLastError

Pointer to a structure that receives the last error information.

Return Value

The driver returns CLIENT_STATUS_SUCCESS.

Remarks

This function currently has no practical significance for virtual drivers; it is provided for

compatibility with the loadable module interface.

DriverInfo

Gets information about the virtual driver, such as the version level of the driver.

Calling Convention

INT DriverInfo(PVD pVD, PDLLINFO pVdInfo, PUINT16 puiSize);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdInfo

Pointer to a standard driver information structure.

puiSize
Pointer to the size of the driver information structure. This is an output parameter.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 51 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Return Value

If the function succeeds, it returns CLIENT_STATUS_SUCCESS.

If the function fails because the buffer pointed to by pVdInfo is too small, it returns

CLIENT_ERROR_BUFFER_TOO_SMALL. Normally, when a CLIENT_ERROR_* result

code is returned, the ICA session is disconnected. CLIENT_ERROR_BUFFER_
TOO_SMALL is an exception and does not result in the ICA session being disconnected.

Instead, the WinStation driver attempts to call DriverInfo again with the ByteCount of

pVdInfo returned by the failed call.

Remarks

When the client starts, it calls this function to retrieve module-specific information for

transmission to the host. This information is returned to the server side of the virtual

channel by WFVirtualChannelQuery.

The virtual driver must support this call by returning a structure in the pVdInfo buffer. This

structure can be a developer-defined virtual channel-specific structure, but it must begin with a

VD_C2H structure, which in turn begins with a MODULE_C2H structure. All fields of the
VD_C2H structure must be filled in except for the ChannelMask field. See ica-c2h.h (in src\inc\)

for definitions of these structures.

The virtual driver must first check the size of the information buffer given against the size that

the virtual driver requires (the VD_C2H structure). The size of the input buffer is given in

pVdInfo->ByteCount.

If the buffer is too small to store the information that the driver needs to send, the correct

size is filled into the ByteCount field and the driver returns

CLIENT_ERROR_BUFFER_TOO_SMALL.

If the buffer is large enough, the driver must fill it with a module-defined structure. At a

minimum, this structure must contain a VD_C2H structure. The VD_C2H structure must be the

first data in the buffer; additional channel-specific data can follow. All relevant fields of this

structure are filled in by this function. The flow control method is specified in the VDFLOW

structure (an element of the VD_C2H structure). The Ping example contains a flow control

selection.

The WinStation driver calls this function twice at initialization, after calling DriverOpen. The

first call contains a NULL information buffer and a buffer size of zero. The driver is expected

to fill in pVdInfo->ByteCount with the required buffer size and return

CLIENT_ERROR_BUFFER_TOO_SMALL. The WinStation driver allocates a buffer of that

size and retries the operation.

The data buffer pointed to by pVdinfo->pBuffer must not be changed by the virtual driver.

The WinStation driver stores byte swap information in this buffer.

The parameter puiSize must be initialized to the size of the driver information structure.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 52 of 72 Virtual Channel SDK Programmer Guide, Version 1808

DriverOpen

Initializes the virtual driver. The client engine calls this user-written function once when the

client is loaded.

Calling Convention

INT DriverOpen(PVD pVD, PVDOPEN pVdOpen. PUINT16 puiSize);

Parameters

pVD

Pointer to the virtual driver control structure. This pointer is passed on every call to
the virtual driver.

pVdOpen

Pointer to the virtual driver Open structure.

puiSize

Pointer to the size of the virtual driver Open structure. This is an output parameter.

Return Values

If the function succeeds, it returns CLIENT_STATUS_SUCCESS.

If the function fails, it returns the CLIENT_ERROR_* value corresponding to the error

condition; see Clterr.h (in src\inc\) for a list of error values beginning with CLIENT_ERROR

Remarks

The code fragments in this section are taken from the vdping example.

The DriverOpen function must:

1. Allocate a virtual channel.

Fill in a WDQUERYINFORMATION structure and call VdCallWd. The WinStation driver fills

in the OpenVirtualChannel structure (including the channel number) and the data in pVd.

WDQUERYINFORMATION wdqi;

OPENVIRTUALCHANNEL OpenVirtualChannel;

wdqi.WdInformationClass = WdOpenVirtualChannel;

wdqi.pWdInformation = &OpenVirtualChannel;

wdqi.WdInformationLength = sizeof(OPENVIRTUALCHANNEL);

OpenVirtualChannel.pVCName = CTXPING_VIRTUAL_CHANNEL_NAME;

rc = VdCallWd(pVd, WDxQUERYINFORMATION, &wdqi);

/* do error processing here */

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 53 of 72 Virtual Channel SDK Programmer Guide, Version 1808

After the call to VdCallWd, the channel number is assigned in the

OpenVirtualChannel structure's Channel element. Save the channel number.

For example:

g_usVirtualChannelNum = OpenVirtualChannel.Channel;

2. Optionally specify a pointer to a private data structure.

If you want the virtual driver to allocate memory for state data, it can have a pointer to this data
returned on each call by placing the pointer in the virtual driver structure, as follows:

pVd->pPrivate = pMyStructure;

3. Exchange entry point data with the WinStation driver.

The virtual driver must register a write hook with the client WinStation driver. The write hook is
the entry point of the virtual driver to be called when data is received for this virtual channel.
The WinStation driver returns pointers to functions that the driver must use to fill in output
buffers and sends data to the WinStation driver for transmission to the server.

WDSETINFORMATION wdsi;

VDWRITEHOOK vdwh;

// Fill in a write hook structure

vdwh.Type = g_usVirtualChannelNum;

vdwh.pVdData = pVd;

vdwh.pProc = (PVDWRITEPROCEDURE) ICADataArrival;

// Fill in a set information structure

wdsi.WdInformationClass = WdVirtualWriteHook;

wdsi.pWdInformation = &vdwh;

wdsi.WdInformationLength = sizeof(VDWRITEHOOK);

rc = VdCallWd(pVd, WDxSETINFORMATION, &wdsi);

/* do error processing here */

During the registration of the write hook, the WinStation driver passes entry points for the

output buffer virtual driver helper functions to the virtual driver in the VDWRITEHOOK

structure. The DriverOpen function saves these in global variables so helper functions in

the virtual driver can use them. The WinStation driver also passes a pointer to the

WinStation driver data area, which the DriverOpen function also saves (because it is the

first argument to the virtual driver helper functions).

 // Record pointers to functions used

// for sending data to the host.

pWd = vdwh.pWdData;

pOutBufReserve = vdwh.pOutBufReserveProc;

pOutBufAppend = vdwh.pOutBufAppenProc;

pOutBufWrite = vdwh.pOutBufWriteProc;

pAppendVdHeader = vdwh.pAppendVdHeaderProc;

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 54 of 72 Virtual Channel SDK Programmer Guide, Version 1808

4. Determine the version of the WinStation driver.

New virtual drivers should determine whether the WinStation driver supports the new SendData
API and “no polling” mode. Use the WdVirtualWriteHookEx information class to retrieve this
information:

 // Do extra initialization to determine if

// we are talking to an HPC client.

wdsi.WdInformationClass = WdVirtualWriteHookEx;

wdsi.pWdInformation = &vdwhex;

wdsi.WdInformationLength = sizeof(VDWRITEHOOKEX);

vdwhex.usVersion = HPC_VD_API_VERSION_LEGACY; // Set version

// to 0; older clients will do nothing

rc = VdCallWd(pVd, WDxQUERYINFORMATION, &wdsi, &uiSize);

if(CLIENT_STATUS_SUCCESS != rc)

{

return(rc);

}

g_fIsHpc = (HPC_VD_API_VERSION_LEGACY != vdwhex.usVersion);

// If version returned, this is HPC or later

g_pSendData = vdwhex.pSendDataProc; // save HPC SendData

// API address

The usVersion that is returned may be one of the following values:

 typedef enum _HPC_VD_API_VERSION

{

HPC_VD_API_VERSION_LEGACY = 0, // legacy VDs

HPC_VD_API_VERSION_V1 = 1, // VcSdk API Version 1

} HPC_VD_API_VERSION;

If the usVersion returned is HPC_VD_API_VERSION_LEGACY, the engine is an earlier engine.
Any other value indicates the newer engine. The actual version returned indicates the version
of the API supported. Currently the only other value that will be returned is
HPC_VD_API_VERSION_V1. The g_fIsHpc flag should be set to indicate that the newer API is
available.

The WdVirtualWriteHookEx call also returns a pointer (g_pSendData). This is a pointer to the
SendData function. Save this value for later use.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 55 of 72 Virtual Channel SDK Programmer Guide, Version 1808

5. Set the API options in the WinStation driver.

If this virtual driver is loaded by the HPC WinStation driver, set the API options this driver will
use:

 if(g_fIsHpc)

{

WDSET_HPC_PROPERITES hpcProperties;

hpcProperties.usVersion = HPC_VD_API_VERSION_V1;

hpcProperties.pWdData = g_pWd;

hpcProperties.ulVdOptions = HPC_VD_OPTIONS_NO_POLLING;

wdsi.WdInformationClass = WdHpcProperties;

wdsi.pWdInformation = &hpcProperties;

wdsi.WdInformationLength = sizeof(WDSET_HPC_PROPERITES);

rc = VdCallWd(pVd, WDxSETINFORMATION, &wdsi, &uiSize);

if(CLIENT_STATUS_SUCCESS != rc)

{

return(rc);

}

}

The usVersion field is set to inform the engine of the version of the VD API that this driver will
use. This allows the engine to maintain the compatibility of the VD API for this driver at this
level, even if the engine API changes in the future.

The pWdData pointer must point to the same data that was pointed to by the pWdData field
returned by the WdVirtualWriteHook VdCallWd call earlier in DriverOpen.

The ulVdOptions field is a bitwise OR of any of the following bit definitions:

 typedef enum _HPC_VD_OPTIONS

{

HPC_VD_OPTIONS_NO_POLLING =0x0001, // Flag indicating that

// channels on this VD do not

// require send data polling

HPC_VD_OPTIONS_NO_COMPRESSION =0x0002 // Flag indicating

// that channels on this VD

// send data that does not

// need reducer compression

} HPC_VD_OPTIONS;

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 56 of 72 Virtual Channel SDK Programmer Guide, Version 1808

6. Allocate all memory needed by the driver and do any initialization. You can obtain the maximum
ICA buffer size from the MaximumWriteSize element in the VDWRITEHOOK structure that is
returned.

Note: vdwh.MaximumWriteSize is one byte greater than the actual maximum that you

can use because it also includes the channel number.

g_usMaxDataSize = vdwh.MaxiumWriteSize - 1;

if(NULL == (pMyData = malloc(g_usMaxDataSize)))

{

return(CLIENT_ERROR_NO_MEMORY);

}

7. Return the size of the VDOPEN structure in puiSize. This is used by the client engine to
determine the version of the virtual channel driver.

DriverPoll

Allows the virtual driver to check timers and other state information, send queued data to the

server, and perform any other required processing. This function may be called on a regular
basis by the main client poll loop.

Calling Convention

INT DriverPoll(PVD pVD, PVOID pVdPoll, PUINT16 puiSize);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdPoll

Pointer to one of the driver poll information structures (DLLPOLL or DLL_HPC_POLL).

puiSize

Pointer to the size of the driver poll information structure. This is an output parameter.

Return Values

If the function succeeds, it returns CLIENT_STATUS_SUCCESS.

If the driver has no data on this polling pass, it returns CLIENT_STATUS_NO_DATA.

If all virtual channels return CLIENT_STATUS_NO_DATA, the WinStation driver may slow

down the polling process

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 57 of 72 Virtual Channel SDK Programmer Guide, Version 1808

If the sending of data via either the QueueVirtualWrite or the SendData function

is blocked (CLIENT_ERROR_NO_OUTBUF), DriverPoll should return

CLIENT_STATUS_ERROR_RETRY so the WinStation driver does not slow

polling. The virtual driver should then try again the next time it is polled.

If the virtual driver cannot allocate an output buffer, it returns

CLIENT_STATUS_ERROR_RETRY so the WinStation driver does not slow polling.

The virtual driver then attempts to get an output buffer the next time it is polled.

If polling has been disabled via the HPC_VD_OPTIONS_NO_POLLING option,

DriverPoll will be called at least once, and then only when the virtual driver has asked

to be polled, or when it has asked to be notified when a send operation can be retried.

The return values have the same setting as in the polling case above. Return

CLIENT_STATUS_SUCCESS if all data has been sent successfully. Return

CLIENT_STATUS_NO_DATA if there is no data available to send. Return

CLIENT_STATUS_ERROR_RETRY if the send operation was blocked and the virtual

driver has more data to send.

Return values that begin with CLIENT_ERROR_* are fatal errors; the ICA session will be
disconnected.

Remarks

A virtual driver is not allowed to block while waiting for a desired result (such as the availability of an

output buffer).

The Ping example includes examples of processing types that can occur in Driver Poll.

DriverQueryInformation

Gets run-time information from the virtual driver.

Calling Convention

INT DriverQueryInformation(PVD pVD,

PVDQUERYINFORMATION pVdQueryInformation,

PUINT16 puiSize);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdQueryInformation

Pointer to a structure that specifies the information to query and the results buffer.

puiSize

Pointer to the size of the query information and resolves structure. This is an output

parameter.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 58 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Return Value

The function returns CLIENT_STATUS_SUCCESS.

Remarks

This function currently has no practical significance for virtual drivers; it is provided for

compatibility with the loadable module interface. There are no general purpose query functions at

this time other than LastError. The LastError query is accomplished through the

DriverGetLastError function.

DriverSetInformation

Sets run-time information in the virtual driver.

Calling Convention

INT DriverSetInformation(PVD pVD,

PVDSETINFORMATION pVdSetInformation,

PUINT16 puiSize);

Parameters

pVD

Pointer to a virtual driver control structure.

pVdSetInformation

Pointer to a structure that specifies the information class, a pointer to any additional data, and the

size in bytes of the additional data (if any).

puiSize

Pointer to the size of the information structure. This is an input parameter.

Return Value

The function returns CLIENT_STATUS_SUCCESS.

Remarks

This function can receive two information classes:

• VdDisableModule: When the connection is being closed.

• VdFlush: When WFPurgeInput or WFPurgeOutput is called by the server-side virtual channel

application. The VdSetInformation structure contains a pointer to a VDFLUSH structure that

specifies which purge function was called.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 59 of 72 Virtual Channel SDK Programmer Guide, Version 1808

SendData

Sends a virtual channel packet to the server, with a notification option.

Calling Convention

INT WFCAPI SendData(DWORD pWd, USHORT usChannel,

LPBYTE pData,USHORT usLen,

LPVOID pUserData, UINT32 uiFlags);

Parameters

pWd

Pointer to a WinStation driver control structure.

usChannel

The virtual channel number.

pData

Pointer to the data buffer containing the virtual channel data to send.

usLen
Length in bytes of the data in the data buffer.

pUserData

This is a pointer to arbitrary VD user data that will be passed back to the callback function
(DriverPoll) on notification that the send should be retried. See DriverPoll and the
SENDDATA_NOTIFY flag described below.

uiFlags

Flags to control the operation of the SendData function. This value consists of a number of flags
bitwise OR'ed together. Each of the flags controls some aspect of the SendData interface.
Currently there is only one flag defined. See the SENDDATA_* enum:

• SENDDATA_NOTIFY: If this flag is set, and when the SendData return code is
CLIENT_ERROR_NO_OUTBUF indicating that the engine had no buffers to
accommodate the outbound packet, the engine will notify the virtual driver later when it
can retry the send operation. The notification occurs via the DriverPoll method.

Return Value

The SendData function will return one of the following values:

• CLIENT_STATUS_SUCCESS:
o The data was copied into virtual write buffers.
o The user's buffer is free.
o No callback will occur, even if the SENDDATA_NOTIFY flag is set.
o The next SendData call can be issued immediately.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 60 of 72 Virtual Channel SDK Programmer Guide, Version 1808

• CLIENT_ERROR_NO_OUTBUF:
o The virtual write could not be scheduled (out of VirtualWrite buffers). If a

notification was requested, DriverPoll will be driven with the notification at some
later time when the virtual driver should retry sending.

o If no notification was requested, the virtual driver should return from DriverPoll and
wait for the next poll before retrying the send. This assumes that the virtual driver
had selected the polled mode of operation.

• CLIENT_ERROR_BUFFER_STILL_BUSY:
o If the user has called SendData requesting a notification, and the return code was

CLIENT_ERROR_NO_OUTBUF, the user must not issue another SendData call
until the notification has occurred. If another call is issued before the notification
occurs, the CLIENT_ERROR_BUFFER_STILL_BUSY return code will result.

• CLIENT_ERROR_*: Any other error should cause the virtual driver and the session to
close.

Note: If the user has specified HPC_VD_OPTIONS_NO_POLLING in the HPC channel options, then
the virtual driver must assume that its DriverPoll function will not be called again after receiving one
of these errors.

Remarks

This function is used to send channel protocol to the server. The engine either accepts all

the data, or refuses it all, in which case the channel will need to retry later (normally inside

DriverPoll).

The address for this function is obtained from the VDWRITEHOOKEX structure after hook

registration in pSendDataProc. The VDWRITEHOOK structure provides pWd.

ICADataArrival

The WinStation driver calls this function when data is received on a virtual channel being monitored
by the driver. The address of this function is passed to the WinStation driver during DriverOpen.

Calling Convention

VOID wfcapi ICADataArrival(PVD pVD, USHORT uchan, LPBYTE pBuf,

USHORT Length);

Parameters

pVD

Pointer to a virtual driver control structure.

uChan

Virtual channel number.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 61 of 72 Virtual Channel SDK Programmer Guide, Version 1808

pBuf

Pointer to the data buffer containing the virtual channel data as sent by the server-side application.

Length

Length in bytes of the data in the buffer.

Return Value

No value is returned from this function.

Remarks

This function name is a placeholder for a user-defined function; the actual function does not

have to be called ICADataArrival, although it does have to match the function signature

(parameters and return type). The address of this function is given to the WinStation driver

during DriverOpen. Although ICA prefixes packet control data to the virtual channel data, this

prefix is removed before this function is called.

After the virtual driver returns from this function, the WinStation driver considers the data

delivered. The virtual driver must save whatever information it needs from this packet if later

processing is required.

Do not allow this function to block. Use your own thread or the DriverPoll function (with

polling enabled) for any required deferred processing.

The virtual driver can send data to the server on receipt of this data from within the

ICADataArrival function, but be aware that the send operation may return an immediate error

when buffers are not available to accommodate the send operation. The virtual driver may

not block in this function waiting for the sending operation to complete.

If the virtual driver is handling multiple virtual channels, use the uChan parameter to

determine the channel over which this data is to be sent. See DriverOpen for more

information.

miGetPrivateProfileBool

Gets a Boolean value from a section of the Configuration Storage.

Calling Convention

INT miGetPrivateProfileBool(PCHAR lpszSection, PCHAR lpszEntry,

BOOL bDefault);

Parameters

lpszSection

Name of section to query.

lpszEntry

Name of entry to query.

bDefault

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 62 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Default value to use.

Return Values

If the requested entry is found, the entry value is returned; otherwise, bDefault

is returned.

Remarks

A Boolean value of TRUE can be represented by on, yes, or true in the Configuration

Storage. All other strings are interpreted as FALSE.

miGetPrivateProfileInt

Gets an integer from a section of the Configuration Storage.

Calling Convention

INT miGetPrivateProfileInt(PCHAR lpszSection, PCHAR lpszEntry,

INT iDefault);

Parameters

lpszSection

Name of section to query.

lpszEntry

Name of entry to query.

iDefault

Default value to use.

Return Values

If the requested entry is found, the entry value is returned; otherwise, iDefault

is returned.

miGetPrivateProfileLong

Gets a long value from a section of the Configuration Storage.

Calling Convention

INT miGetPrivateProfileLong(PCHAR lpszSection, PCHAR lpszEntry,

LONG lDefault);

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 63 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Parameters

lpszSection

Name of section to query.

lpszEntry

Name of entry to query.

lDefault

Default value to use.

Return Values

If the requested entry is found, the entry value is returned; otherwise, lDefault

is returned.

miGetPrivateProfileString

Gets a string from a section of the Configuration Storage.

Calling Convention

INT miGetPrivateProfileString(PCHAR lpszSection, PCHAR lpszEntry,

PCHAR lpszDefault,

PCHAR lpszReturnBuffer, INT cbSize);

Parameters

lpszSection

Name of section to query.

lpszEntry

Name of entry to query.

lpszDefault

Default value to use.

lpszReturnBuffer

Pointer to a buffer to hold results.

cbSize

Size of lpszReturnBuffer in bytes.

Return Values

This function returns the string length of the value returned in lpszReturnBuffer
(not including the trailing NULL).

If the requested entry is found and the size of the entry string is less than or equal to cbSize, the
entry value is copied to lpszReturnBuffer; otherwise, iDefault is copied to lpszReturnBuffer.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 64 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Remarks

lpszDefault must fit in lpszReturnBuffer. The caller is responsible for allocating

and deallocating lpszReturnBuffer.

lpszReturnBuffer must be large enough to hold the maximum length entry string, plus a NULL

termination character. If an entry string does not fit in lpszReturnBuffer, the lpszDefault value

is used.

QueueVirtualWrite

Sends a virtual channel packet to the server.

Calling Convention

INT WFCAPI QueueVirtualWrite(PWD pWd, USHORT ChannelNumber,
LPMEMORY_SECTION pMemorySections,
USHORT NumberOfSections, USHORT FlushControl);

Parameters

pWd

Pointer to a WinStation driver control structure.
ChannelNumber

The virtual channel number
pMemorySections

Pointer to an array of one or more elements of the structure MEMORY_SECTION (see below)
containing the pure body of the protocol, i.e. excluding the virtual write header defining the channel
and the length. This will get constructed by the QueueVirtualWrite function itself. Normally the
protocol body will already be in a single contiguous block of memory. But if not, then multiple
sections can be defined, and the destination function will copy all the different pieces into the
appropriate internal WD queue.

NumberOfSections

The number of memory sections, normally 1.
FlushControl

Indicates whether a ‘flush to wire’ operation should be triggered after the data has been
successfully queued. If this value is FLUSH_IMMEDIATELY, then if the line conditions permit, the
WD will attempt to send this new virtual write immediately over the wire, after also flushing any
earlier queued data for the same or higher priority. If the data is not time critical (within the span of
about 50ms), it may be better not to force a flush at this point, so that the data (if small) may go
over the wire together with other data, so making better use of the wire bandwidth. The value to
use if an immediate flush is not required is !FLUSH_IMMEDIATELY.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 65 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Memory section
This structure has the definition:

typedef struct _MEMORY_SECTION
{

UINT length; // Length of data
LPBYTE pSection; // Address of data

} MEMORY_SECTION, far * LPMEMORY_SECTION;

Return Values

If the function succeeds, it returns CLIENT_STATUS_SUCCESS. If it cannot currently accept

the data, it returns CLIENT_ERROR_NO_OUTBUF. If being called from DriverPoll, then the

return value for the DriverPoll should normally be set to CLIENT_STATUS_ERROR_RETRY in

this case. If the function fails, it returns an error code associated with the failure; use

GetLastError to get the extended error information.

Remarks

This function is used to send channel protocol to the server. The engine either accepts all

the data, or refuses it all, in which case the channel will need to retry later (normally inside

DriverPoll).

The address for this function is obtained from the VDWRITEHOOK structure after hook

Registration in pQueueVirtualWriteProc. The VDWRITEHOOK structure also provides pWd.

Each successful call will ultimately result in a single block of protocol, with length = total length
of all memory sections, being delivered to the server-side channel.

VdCallWd

Calls the client WinStation driver to query and set information about the virtual channel.

This is the main method for the virtual driver to access the WinStation driver. For

general-purpose virtual channel drivers, this sets the virtual write hook.

Calling Convention

INT VdCallWd(PVD pVd, USHORT ProcIndex, PVOID pParam);

Parameters

pVd

Pointer to a virtual driver control structure.

ProcIndex

Index of the WinStation driver routine to call. For virtual drivers, this can be either
WDxQUERYINFORMATION or WDxSETINFORMATION.

pParam

Pointer to a parameter structure.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 66 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Return Values

If the function succeeds, it returns CLIENT_STATUS_SUCCESS.

If the function fails, it returns an error code associated with the failure; use

DriverGetLastError to get the extended error information.

Remarks

This function is a general purpose mechanism to call routines in the WinStation driver.

The only valid uses of this function for a virtual driver are:

• To allocate the virtual channel using WDxQUERYINFORMATION.

• To exchange function pointers with the WinStation driver during DriverOpen using
WDxSETINFORMATION.

For more information, see DriverOpen or the Ping example.

On successful return, the VDWRITEHOOK structure contains pointers to the output buffer virtual

driver helper functions, and a pointer to the WinStation driver control block (which is needed for

buffer calls).

WFVirtualChannelClose

Closes an open virtual channel handle.

Calling Convention

BOOL WINAPI WFVirtualChannelClose(IN HANDLE hChannelHandle);

Parameter

hChannelHandle

Handle to a previously opened virtual channel. Use WFVirtualChannelOpen to obtain a handle for
a specific channel.

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE; call GetLastError to get extended

error information.

Remarks

When this function is called, any data waiting to be sent to the client is discarded. Call this function
when the server-side virtual channel application is finished.

The client- side virtual driver is not closed until the ICA session is closed. If the virtual driver sends

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 67 of 72 Virtual Channel SDK Programmer Guide, Version 1808

data to the server after the server-side application closes, the data is queued on the server and
eventually discarded.

To prevent the virtual driver from sending data after the server-side application closes, you

might need to incorporate a packet type into your virtual channel protocol to notify the virtual

driver that the server-side application is closing.

WFVirtualChannelOpen

Opens a handle to a specific virtual channel.

Calling Convention

HANDLE WINAPI WFVirtualChannelOpen(IN HANDLE hServer,

IN DWORD SessionId,

IN LPSTR pVirtualName // ANSI name

);

Parameters

hServer

Handle to a server running XenApp. To specify the current server, use the constant

WF_CURRENT_SERVER_HANDLE. Use WFOpenServer to obtain a handle for a specific

server. For more information about the WFOpenServer function, see the WFAPI SDK

documentation.

SessionId

Server session ID. Use the constant WF_CURRENT_SESSION to specify the current

session. To obtain the session ID of a specific session, use WFEnumerateSessions. For

more information about session IDs and WFEnumerateSessions, see the WFAPI SDK
documentation.

pVirtualName

Pointer to the virtual channel name. This is an ASCII string (even when

Unicode is defined) of no more than seven characters.

Return Values

If the function succeeds, it returns a handle to the specified virtual channel.

If the function fails, it returns NULL; call GetLastError for extended error information.

Remarks

The WinStation driver opens the channel by name, assigns a channel number, and returns a handle.
The server-side virtual channel application uses this handle to read and write data to the virtual
channel.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 68 of 72 Virtual Channel SDK Programmer Guide, Version 1808

WFVirtualChannelPurgeInput

Purges all queued input data sent from the client to the server on a specific

virtual channel.

Calling Convention

BOOL WINAPI WFVirtualChannelPurgeInput(IN HANDLE hChannelHandle);

Parameter

hChannelHandle

Handle to a previously opened virtual channel. To obtain a handle for a specific
channel, use WFVirtualChannelOpen.

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE; call GetLastError to get extended

error information.

Remarks

Output buffers and queued data received from the client are discarded.

This function sends a message to the client WinStation driver, which then calls the client

virtual driver’s DriverSetInformation function with the VdFlush information class. For most
virtual channels, this function is not necessary and you can use the Ping example function

without modification.

WFVirtualChannelPurgeOutput

Purges all queued output data sent from the server to the client on a specific virtual

channel.

Example of use: in an audio application in which the user starts playing a different audio file,

use this function to discard the audio that was queued to be sent to the client from the first file

played.

Calling Convention

 BOOL WINAPI WFVirtualChannelPurgeOutput(IN HANDLE hChannelHandle);

66 | P a g e

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 69 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Parameter

hChannelHandle

Handle to a previously opened virtual channel. To obtain a handle for a specific

channel, use WFVirtualChannelOpen.

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call GetLastError to get

extended error information.

Remarks

Output buffers and data queued to be sent to the client are discarded.

This function sends a message to the client WinStation driver, which then calls the client

virtual driver’s DriverSetInformation function with the VdFlush information class. For most
virtual channels, this function is not necessary and you can use the Ping example function
without modification.

WFVirtualChannelQuery

Returns data related to a virtual channel. This information is obtained when the ICA connection is
initiated and the WinStation driver calls the DriverInfo function.

Calling Convention

BOOL WINAPI WFVirtualChannelQuery(IN HANDLE hChannelHandle,

IN WF_VIRTUAL_CLASS VirtualClass,

OUT PVOID *ppBuffer,

OUT DWORD *pBytesReturned

);

Parameters

hChannelHandle

Handle to a previously opened virtual channel. To obtain a handle for a specific

channel, use WFVirtualChannelOpen.

VirtualClass

Type of information to request. Currently, the only defined value is

WFVirtualClientData , which returns virtual channel client module data.

ppBuffer

Pointer to the address of a variable to receive the data. The buffer is allocated

within this function and is deallocated by using WFFreeMemory.

pBytesReturned

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 70 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Pointer to a DWORD that is updated with the length of the data returned in the

allocated buffer (upon successful return).

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE; Call GetLastError to get

extended error information.

Remarks

ppBuffer begins with the structure VD_C2H, which begins with the structure

MODULE_C2H. These two structures are defined in Ica-c2h.h (in src\inc\). See the Ping

example for more information.

WFVirtualChannelRead

Reads data from a virtual channel.

Calling Convention

BOOL WINAPI WFVirtualChannelRead(IN HANDLE hChannelHandle,

IN ULONG TimeOut,

OUT PCHAR pBuffer,

IN ULONG BufferSize,

OUT PULONG pBytesRead

);

Parameters

hChannelHandle

Handle to a previously opened virtual channel. To obtain a handle for a specific

channel, use WFVirtualChannelOpen.

TimeOut

Length of time to wait for data (in milliseconds). If this value is zero, the function

returns immediately whether or not data is available. If this value is -1, the

function continues waiting until there is data to read.

pBuffer

Buffer to receive the data read from the virtual channel.

BufferSize

Size in bytes of the buffer needed.

pBytesRead

Pointer to a variable that receives the number of bytes read.

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 71 of 72 Virtual Channel SDK Programmer Guide, Version 1808

Return Values

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE; call GetLastError to get extended

error information.

Remarks

The developer determines the BufferSize, which can be any length up to the maximum

size supported by the ICA connection. This size is independent of size restrictions on

the lower-layer transport.

• If the server is running XenApp or a version of Presentation Server 3.0 Feature Release 2 or
later, the maximum packet size is 5000 bytes (4996 bytes of data plus the 4-byte packet

overhead generated by the ICA datastream manager).

• If the server is running a version of Presentation Server earlier than 3.0 Feature Release 2,

the maximum packet size is 2048 bytes (2044 bytes of data plus the 4-byte packet overhead

generated by the ICA datastream manager).

If more data is received than the buffer can hold, the entire packet is discarded.

If no data is received, pBuffer and pBytesRead are unmodified. The function fails if the read times
out.

The server-side virtual channel application is not notified when data is received. Instead, the

data is queued until the application uses WFVirtualChannelRead to retrieve it.

WFVirtualChannelWrite

Writes data to a virtual channel.

Calling Convention

BOOL WINAPI WFVirtualChannelWrite(IN HANDLE hChannelHandle,

IN PCHAR pBuffer,

IN ULONG Length,

OUT PULONG pBytesWritten

);

Parameters

hChannelHandle

Handle to a previously opened virtual channel. To obtain a handle for a specific

channel, use WFVirtualChannelOpen.

pBuffer

Buffer containing data to write to the virtual channel. This must be four bytes

larger than the largest buffer written by the client.

Length

Size in bytes of the buffer needed. This must be four bytes larger than the data

Copyright © Citrix Systems, Inc. All Rights Reserved.

Page 72 of 72 Virtual Channel SDK Programmer Guide, Version 1808

written by the application.

pBytesWritten

Pointer to a ULONG variable that receives the number of bytes written.

Return Values

If the data is sent, the return value is TRUE.

If the data is not sent, the return value is FALSE; call GetLastError to get extended

error information.

Remarks

The developer determines the Length, which can be any length up to the maximum size supported by
the ICA connection. This size is independent of size restrictions on the lower-layer transport.

• If the server is running XenApp or a version of Presentation Server 3.0 Feature Release 2 or

later, the maximum packet size is 5000 bytes (4996 bytes of data plus the 4-byte packet

overhead generated by the ICA datastream manager).

• If the server is running a version of Presentation Server earlier than 3.0 Feature Release 2,

the maximum packet size is 2048 bytes (2044 bytes of data plus the 4-byte packet overhead

generated by the ICA datastream manager).

The WinStation driver calls the client virtual driver's ICADataArrival function.

